Tuesday 7 ${ }^{\text {th }}$ November 2017

Maths

Parent Information Session

Mr Mordue \& Mr Taylor Maths Leaders

Aims

- Provide you with a greater understanding of how Maths is taught in our school.
- Show you the progression of calculation methods through KS1 and KS2.
- Enable you to see the types of different questions children are asked.
- Help you understand how you can help your child at home with their Maths.

Maths in KS1

Mr Mordue

Contents

- The 4 operations - including calculation methods used and progression through the key stage
- Mental arithmetic: Number bonds, times tables and mental strategies
- Problem solving / Using and Applying
- How you can help at home

KS1: The Basics

- Recognise, read and write numbers:
Three
\therefore
3

KS1: The Basics

- Understand place value:

1 ten 3 ones
 ㅁ
 13 thirteen

H	T	U

KS1: The Basics

- Put numbers in order:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

KS1: The Basics

- Count forwards and backwards in same size steps

KS1: The Basics

- Partition a number and recombine it

KS1 Calculation Methods

The 4 operations

Addition - Practical resources

- Dienes blocks
- Counters/multi-link cubes
- Toys

$$
4+3=7
$$

Addition - Practical resources

- 100 square
- $23+5=28$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Addition - Practical resources

- Number line: Starting with single 'jumps' and then moving onto jumps of $2,5,10$

$$
14+6=20
$$

Addition - Partitioning for 2 digit +2 digit

- Number Line

$$
\begin{aligned}
& 16+12=28 \\
& 12 \text { is partitioned into } T+U \\
& 12=10+2
\end{aligned}
$$

Addition - Written Methods

- Partitioning
- Partitioning means splitting the number into the tens and units. It is essential that their place value is secure.

$$
\begin{aligned}
56+32=50+30 & =80 & & \text { (partition tens) } \\
6+2 & =8 & & \text { (partition units) }
\end{aligned}
$$

$80+8=88$ (add tens and units answer together)

Subtraction - Practical Resources

- Dienes blocks
- Counters
- Toys
- Pebbles
$5-2=3$

Subtraction - Practical Resources

- Number line
- $13-6=7$

1	2	3	4	5	6	7	8	9	10	11	12	13

Subtraction - Practical Resources

- 100 square
- $38-5=33$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Subtraction - Finding the difference

$\frac{\text { MWWM }}{15-7=8}$

Subtraction - Counting On

 Finding the difference- Count on from the smallest to the largest once again bridging through ten or a multiple of ten.

$$
\begin{aligned}
74-52 & =8+10+4 \\
& =22
\end{aligned}
$$

Multiplication - Doubling

$$
5+5=10
$$

Multiplication - Doubling

Moving onto partitioning to double numbers
Double $23=46$

Multiplication - Practical Resources/Repeated Addition

$$
3 \times 5=(3 \text { groups of } 5)=5+5+5=15
$$

Multiplication - Number lines/100 square

- Children use the number line and the idea of repeated addition to count in groups.
- $4 \times 3=12$

Multiplication - Times Tables

Division - Halving

Division - Halving

Moving onto partitioning to halve numbers
Halve 46= 23

Division - Practical Resources - Sharing

$15 \div 3=15$ 'shared between' $3=5$

Division - Grouping

The number in the group is known but how many groups is unknown.

How many 3 s in $12 ?$

We need to count the number of groups.

Division - Corresponding times table facts From here we get the children to use their times tables knowledge to work out the inverse operation...
$20 \div 5=4$
Children need to use their knowledge of 5 times table to use the corresponding fact...
$4 \times 5=20$ so $20 \div 5=4$

Division - Number line

18 into groups of $3=6$ groups 18 into jumps of $3=6$ jumps
$18 \div 3=6$

Division - with remainders

28 children into groups of 5 How many children left without a group?

$$
28 \div 5=5 \mathrm{r} 3
$$

Using and Applying

- Understanding mathematical vocabulary
- Applying strategies taught
- Reasoning and explaining answers

Using and Applying

Missing numbers $10=5 \mathrm{x}$ What number could be written in the box? Making links I have 30p in my pocket in $5 p$ coins. How many coins do I have?	Missing numbers $24=\square \times \square$ Which pairs of numbers could be written in the boxes? Making links Cards come in packs of 4. How many packs do I need to buy to get 32 cards?	Missing numbers $72=\square \times \square$ Which pairs of numbers could be written in the boxes? Making links Eggs are bought in boxes of 12 . I need 140 eggs; how many boxes will I need to buy?	Missing numbers $\begin{aligned} & 6 \times 0.9=\square \times 0.03 \\ & 6 \times 0.04=0.008 \times \square \end{aligned}$ Which numbers could be written in the boxes? Making links Apples weigh about 170 g each. How many apples would you expect to get in a 2 kg bag?	Missing numbers $2.4 \div 0.3=\square \times 1.25$ Which number could be written in the box? Making links

Using and Applying

There are $\mathbf{3 5}$ children.
They get into teams of 5

How many teams are there altogether?

Using and Applying

13 Ben has 13 crayons.

Here are Abdul's crayons.

How many crayons does Abdul have?

How you can help at home

- Lots of practice - in the car, online games, counting objects at home
- Playing games - cards, snakes and ladders, dominoes
- Cooking for measurements
- Telling the time

KS1 Online Help

Maths Games www.maths-games.org

Maths Bingo www.abcya.com

Numberjacks Video clips and Songs
www.youtube.com

ICT Games

www.ictgames.com

Crickweb

Crickweb www.crickweb.co.uk

Top Marks
www.topmarks.co.uk

