Tuesday 7th November 2017 Maths Parent Information Session

Mr Mordue & Mr Taylor

Maths Leaders

Aims

- Provide you with a greater understanding of how Maths is taught in our school.
- Show you the progression of calculation methods through KS1 and KS2.
- Enable you to see the types of different questions children are asked.
- Help you understand how you can help your child at home with their Maths.

Maths in KS1

Mr Mordue

Contents

- The 4 operations including calculation methods used and progression through the key stage
- Mental arithmetic: Number bonds, times tables and mental strategies
- · Problem solving / Using and Applying
- · How you can help at home

· Recognise, read and write numbers:

Three

3

• Understand place value:

Н	Т	٦

Put numbers in order:

Т	2	3	4	5	6	7	8	9	10
Ш	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

 Count forwards and backwards in same size steps

Partition a number and recombine it

KS1 Calculation Methods

The 4 operations

Addition - Practical resources

- Dienes blocks
- Counters/multi-link cubes
- · Toys

$$4 + 3 = 7$$

Addition - Practical resources

· 100 square

$$\cdot$$
 23 + 5 = 28

_	2	3	4	5	6	7	8	9	0
II	12	13	14	5	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Addition - Practical resources

 Number line: Starting with single 'jumps' and then moving onto jumps of 2, 5, 10

$$14 + 6 = 20$$

Addition - Partitioning for 2 digit + 2 digit

• Number Line 16 + 12 = 28 12 is partitioned into T + U12 = 10 + 2

Addition - Written Methods

- Partitioning
- Partitioning means splitting the number into the tens and units. It is essential that their place value is secure.

$$56 + 32 = 50 + 30 = 80$$
 (partition tens)
 $6 + 2 = 8$ (partition units)

Subtraction - Practical Resources

- Dienes blocks
- Counters
- · Toys
- Pebbles

$$5 - 2 = 3$$

<u>Subtraction - Practical Resources</u>

· Number line

$$\cdot$$
 13 - 6 = 7

1 2 3 4 5 6 7 8 9 10 11 12 13

<u>Subtraction - Practical Resources</u>

• 100 square

· 38 - 5 = 33

1	2	3	4	5	6	7	8	9	10
II	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Subtraction - Finding the difference

15 - 7 = 8

<u>Subtraction - Counting On</u> Finding the difference

 Count on from the smallest to the largest once again bridging through ten or a multiple of ten.

$$74 - 52 = 8 + 10 + 4$$

= 22

<u>Multiplication - Doubling</u>

$$5 + 5 = 10$$

Multiplication - Doubling

Moving onto partitioning to double numbers

Double 23 = 46

<u>Multiplication - Practical Resources/Repeated</u> <u>Addition</u>

$$3 \times 5 = (3 \text{ groups of } 5) = 5 + 5 + 5 = 15$$

<u>Multiplication - Number lines/100 square</u>

 Children use the number line and the idea of repeated addition to count in groups.

<u>Multiplication - Times Tables</u>

<u>Division – Halving</u>

<u>Division - Halving</u>

Moving onto partitioning to halve numbers

Halve 46= 23

<u>Division - Practical Resources - Sharing</u>

 $15 \div 3 = 15$ 'shared between' 3 = 5

Division - Grouping

The number in the group is known but how many groups is unknown.

How many 3s in 12?

We need to count the number of groups.

<u>Division - Corresponding times table facts</u> From here we get the children to use their times tables knowledge to work out the inverse operation...

$$20 \div 5 = 4$$

Children need to use their knowledge of 5 times table to use the corresponding fact...

$$4 \times 5 = 20 \text{ so } 20 \div 5 = 4$$

<u>Division – Number line</u>

18 into groups of 3 = 6 groups 18 into jumps of 3 = 6 jumps

$$18 \div 3 = 6$$

<u>Division - with remainders</u>

28 children into groups of 5
How many children left without a group?

$$28 \div 5 = 5 \text{ r } 3$$

- Understanding mathematical vocabulary
- Applying strategies taught
- Reasoning and explaining answers

Missing numbers

10 = 5 x

What number could be written in the box?

Making links

I have 30p in my pocket in 5p coins. How many coins do I have?

Missing numbers

24 = X Which pairs of numbers could be written in the

boxes?

Making links Cards come in packs of 4. How many packs do I need to buy to get 32 cards?

Missing numbers

72 = X Which pairs of numbers

could be written in the boxes?

Making links Eggs are bought in boxes of 12. I need 140 eggs; how many boxes will I need to buy?

Missing numbers

 $6 \times 0.9 =$ $\times 0.03$

6 x 0.04 = 0.008 x Which numbers could be written in the boxes?

Making links Apples weigh about 170 g each. How many apples would you expect to get in a 2 kg bag?

Missing numbers

 $2.4 \div 0.3 =$ **x** 1.25

Which number could be written in the box?

Making links

There are 35 children.

They get into teams of 5

How many teams are there altogether?

teams

13

Ben has 13 crayons.

Here are Abdul's crayons.

How many crayons does Abdul have?

crayons

How you can help at home

- Lots of practice in the car, online games, counting objects at home
- Playing games cards, snakes and ladders, dominoes
- Cooking for measurements
- Telling the time

KS1 Online Help

Maths Games www.maths-games.org

ICT Games www.ictgames.com

Maths Bingo www.abcya.com

Crickweb Crickweb www.crickweb.co.uk

Numberjacks Video clips and Songs www.youtube.com

Top Marks www.topmarks.co.uk